Solving a 676-Bit Discrete Logarithm Problem in GF(36n)
نویسندگان
چکیده
Pairings on elliptic curves over finite fields are crucial for constructing various cryptographic schemes. The ηT pairing on supersingular curves over GF(3) is particularly popular since it is efficiently implementable. Taking into account the Menezes-Okamoto-Vanstone (MOV) attack, the discrete logarithm problem (DLP) in GF(3) becomes a concern for the security of cryptosystems using ηT pairings in this case. In 2006, Joux and Lercier proposed a new variant of the function field sieve in the medium prime case, named JL06-FFS. We have, however, not yet found any practical implementations on JL06-FFS over GF(3). Therefore, we first fulfill such an implementation and we successfully set a new record for solving the DLP in GF(3), the DLP in GF(36·71) of 676bit size. In addition, we also compare JL06-FFS and an earlier version, named JL02-FFS, with practical experiments. Our results confirm that the former is several times faster than the latter under certain conditions.
منابع مشابه
Breaking Pairing-Based Cryptosystems Using η T Pairing over GF(397)
There are many useful cryptographic schemes, such as ID-based encryption, short signature, keyword searchable encryption, attribute-based encryption, functional encryption, that use a bilinear pairing. It is important to estimate the security of such pairing-based cryptosystems in cryptography. The most essential number-theoretic problem in pairing-based cryptosystems is the discrete logarithm ...
متن کاملAn efficient blind signature scheme based on the elliptic curve discrete logarithm problem
Elliptic Curve Cryptosystems (ECC) have recently received significant attention by researchers due to their high performance such as low computational cost and small key size. In this paper a novel untraceable blind signature scheme is presented. Since the security of proposed method is based on difficulty of solving discrete logarithm over an elliptic curve, performance of the proposed scheme ...
متن کاملFast Arithmetic for Public-Key Algorithms in Galois Fields with Composite Exponents
This contribution describes a new class of arithmetic architectures for Galois fields GF (2k). The main applications of the architecture are public-key systems which are based on the discrete logarithm problem for elliptic curves. The architectures use a representation of the field GF (2k) as GF ((2n)m), where k = n · m. The approach explores bit parallel arithmetic in the subfield GF (2n), and...
متن کاملA Bit-Serial Multiplier Architecture for Finite Fields Over Galois Fields
Problem statement: A fundamental building block for digital communication is the Publickey cryptography systems. Public-Key Cryptography (PKC) systems can be used to provide secure communications over insecure channels without exchanging a secret key. Implementing Public-Key cryptography systems is a challenge for most application platforms when several factors have to be considered in selectin...
متن کاملA Bit-Serial Multiplier Architecture for Finite Fields Over Galois Fields
Problem statement: A fundamental building block for digital communication is the Publickey cryptography systems. Public-Key Cryptography (PKC) systems can be used to provide secure communications over insecure channels without exchanging a secret key. Implementing Public-Key cryptography systems is a challenge for most application platforms when several factors have to be considered in selectin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2010 شماره
صفحات -
تاریخ انتشار 2010